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Abstract

An interesting allylic substituent effect on ring-closing enyne metathesis has been found. An allylic hydroxy group on enyne substrates
accelerates ring-closing enyne metathesis of terminal alkynes. The reaction proceeds smoothly without ethylene atmosphere and/or more
reactive newer generation Ru-carbene catalysts, which are generally necessary to promote the reaction. This efficient reaction was applied
to the synthesis of isofagomine.
� 2007 Elsevier Ltd. All rights reserved.
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Enyne metathesis between an alkyne and an alkene is a
powerful and highly atom-economical carbon–carbon
bond forming reaction to generate 1,3-dienes,1 which can
be transformed into more complex organic molecules.2

With the advent of Ru-alkylidene catalysts,3 applications
of both intramolecular ring-closing and intermolecular
cross enyne metathesis have rapidly expanded.4 Despite
its usefulness, however, the development of enyne metath-
esis has lagged behind that of olefin metathesis,5 probably
due to its capricious efficiency. The ring-closing enyne
metathesis of terminal alkynes using Grubbs’ 1st genera-
tion catalyst (Fig. 1,6 cycle A) is often slow, and the
Ru-vinylcarbene intermediate (IM-2) is thought to prevent
the catalytic cycle because of its stability.7,8 This drawback
has been overcome by utilizing an ethylene atmosphere to
regenerate reactive Ru-carbene species into a new catalytic
cycle (Fig. 1, cycle B)7,9 and/or by developing new more
reactive catalysts.10 In this Letter, we report an interesting
substituent effect on ring-closing enyne metathesis, which
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also can resolve the efficiency problem of enyne metathesis.
Introduction of an allylic hydroxy group into a variety of
enyne substrates smoothly promoted the enyne metathesis
of terminal alkynes without ethylene atmosphere and/or
more reactive newer generation catalysts. This efficient
reaction was applied to the synthesis of isofagomine.

In conjunction with our continuous studies on aza-sug-
ars,11 we investigated enyne metathesis of N-containing
enyne substrates (1a–d) to construct a 3-piperidene frame-
work. The enyne substrates were treated with Grubbs’ 1st
generation catalyst (4 mol %) in CH2Cl2 at rt. The results
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Fig. 1. Catalytic cycle of ring-closing enyne metathesis of terminal alkynes
and the acceleration effect of ethylene.6,9
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Table 1
Acceleration effect of allylic hydroxy group

N
Boc

N
Boc

R R
Grubbs' 1st gen. cat.

CH2Cl2, rt
Time

(4 mol %)
Cy3P

Ru

Cy3P
Cl
Cl

Ph

Grubbs' 1st gen. cat.under Ar1a-d 2a-d

Entry R Time (h) Products Yielda,b (%)

1 H (1a) 41 2a 32 (41)
2c H (1a) 1.5 2a 96
3 OH (1b) 1.5 2b >99

4 OBn (1c) 41 2c 44 (32)
5 OTBDPS (1d) 41 2d 7 (73)

a Isolated yield.
b Figures in parentheses are recovery yields estimated from 1H NMR

spectrum of crude reaction mixture.
c The reaction was performed under ethylene atmosphere.

Table 2
Scope of the acceleration effect of allylic groupa

Entry Substrate Time
(h)

Products Yieldb,c

(%)

1

N
Boc

HO

1b

1.5

N
Boc

HO

2b

>99

2

O

HO

1e

1.5

O

HO

2e

99

3
HO

1f

44.5
HO

2f

74 (17)
4d 1 66

5
HO

1g

32
HO

2g

>99
6d 5 66

7

HO

COOtButBuOOC

1h 48.5

HO

COOtButBuOOC

2h
76

8d 3 77

9
HO 1i

4

HO 2i

79

10
HO 1j

44
HO

2j

15
11d 16.5 45
12e 1.5 61

13

HO

1k

1

HO

2k

>99f

14 1l: X = NBoc, Y = CH2 48 2l ndg

15 1m: X = CH2, Y = O 30 2m ndg

16 1n: X = CH2

Y = C(COOEt)2

40 2n ndg

a The reactions were performed with 0.002 M of Grubbs’ 1st generation
catalyst.

b Isolated yield.
c Figures in parenthesis are recovery yields estimated from 1H NMR

spectrum of crude reaction mixture.
d 8 mol % of the catalyst (0.002 M) was used.
e 12 mol % of the catalyst (0.002 M) was used.
g nd = not detected.

f Since 2k is easily transformed to 2-vinylnaphthalene, the yield was cal-
culated from the sum of 2k and 2-vinylnaphthalene (2k: 2-vinylnaphtha-
lene = 74:26). After 14 h, 2k was completely converted to 2-
vinylnaphthalene.
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are summarized in Table 1. An interesting effect of the
allylic hydroxy group has been highlighted from them.
Compared with the substrate without an allylic substituent
(1a), enyne metathesis of the substrate with an allylic
hydroxy group (1b) proceeded rapidly (Table 1, entries 1
and 3). This acceleration effect of an allylic hydroxy group
is comparable to the effect of an ethylene atmosphere
(Table 1, entry 2). Also, the acceleration is specific for an
allylic hydroxy group. Protection of the allylic hydroxy
group decreased the reaction rate and efficiency (Table 1,
entries 4 and 5). These results clearly indicate an accelera-
tion effect of the allylic hydroxy group.

We then investigated the scope of this acceleration effect
of an allylic hydroxy group. Using 4 mol % of Grubbs’ 1st
generation catalyst, ring-closing metathesis of various N-,
O-, C-tethered enynes containing an allylic hydroxy group
was investigated in CH2Cl2 at rt (Table 2). The enyne
metathesis of an O-tethered enyne that constructs a six-
membered cyclic 1,3-diene proceeded with excellent yield
(99%) in a short time (Table 2, entry 2). C-Tethered enynes
with and without substituents on the tethered chain
smoothly promoted ring-closing enyne metathesis to afford
five- and six-membered cyclic products (Table 2, entries
3–12). Although some reactions took a long time and
had low efficiency, with higher catalyst loading almost all
of these reactions were completed in a short time and gave
cyclic products in good yields. The reaction of a benzene
ring-tethered enyne also proceeded smoothly to yield a
bicyclic product (2k) in excellent yield (Table 2, entry 13).
Unfortunately, seven-membered ring products were not
obtained from corresponding N-, O-, C-tethered enynes
(Table 2, entries 14–16). Although there are some limita-
tions, the enyne metathesis of terminal alkynes with an
allylic hydroxy group proceeds smoothly without ethylene
atmosphere and/or more reactive newer generation cata-
lysts. The acceleration effect is applicable to a wide range
of substrates.

Utilizing this efficient reaction, the synthesis of isofago-
mine was demonstrated (Scheme 1). Isofagomine is a
potent selective b-glucosidase inhibitor that has recently
received much attention in Gaucher’s disease therapy.12

The hydroxy group of dienol 2b given by the ring-closing
metathesis (>99%) was protected with a tert-butyldiphenyl-
silyl (TBDPS) group (99%). Then the TBDPS-protected
product 2d was treated with AD-mix-a�. Highly regioselec-
tive dihydroxylation of terminal olefin proceeded to pro-
vide diol 3 (78%). Oxidative cleavage of the diol with
NaIO4 followed by reduction with NaBH4 gave allylalco-
hol 4 (98% for two steps). Hydroboration of the internal
olefin and the introduction of a hydroxy group provided
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r.t., 1.5 h

methanesulfonamide

t-BuOH /  H2O
r.t., 15h
78 %

1) NaIO4
    EtOH / H2O, r.t., 2.5 h

2) NaBH4
    EtOH / H2O, r.t., 1.5 h

98 %

AD-mix ®-α 

Total Yield 34 %

R =            H (2b)
TBDPS (2d)

TBDPSCl 
imidazole 
DMAP (cat.)
CH2Cl2
rt, 3 h: 99%

4

5 6 7

N
Boc

N
Boc

HO RO

1b

N
Boc

TBDPSO

3

OH

OH

N
Boc

TBDPSO
OH

N
Boc

TBDPSO
OH

OH

N
H

HO
OH

OH

N
H

HO
OH

OH

under Ar

O

1) propargylamine
    H2O(cat.)
    100 °C, 6 h

2) (Boc)2O, NaOH
    1,4-dioxane/H2O (5:1)
    r.t., overnight

71 %

2) NH4OH

Scheme 1. Application to isofagomine synthesis.
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diol 5 (72% for two steps). After deprotection of the
TBDPS and the tert-butoxycarbonyl (Boc) group with
10 mol % HCl, isofagomine (6, 89%) and 3-epi-isofagomine
(7, 10%) were obtained.13 Isofagomine (6) was synthesized
in 34% total yield from commercially available 1,3-butadi-
ene monoxide.14,15

In summary, we have found an interesting acceleration
effect of an allylic hydroxy group on ring-closing enyne
metathesis.16–18 The ring-closing enyne metathesis of vari-
ous terminal alkynes containing an allylic hydroxy group
proceeded smoothly without ethylene atmosphere and/or
more reactive newer generation Ru-carbene catalysts.19

We believe that enyne metathesis would be more helpful
and would act as familiar tool in organic synthesis using
this acceleration effect. Further investigations of the mech-
anism of the acceleration are currently under way.20 Also,
the application of this acceleration effect to other systems
and the development of selective molecular transforma-
tions using this acceleration effect are proceeding in our
laboratory.
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